Stereoselective metabolism of cisapride and enantiomer-enantiomer interaction in human cytochrome P450 enzymes: major role of CYP3A.

نویسندگان

  • Z Desta
  • N Soukhova
  • A M Morocho
  • D A Flockhart
چکیده

Cisapride is a chiral molecule that is marketed as a racemate consisting of two optical isomers, but little is known about its stereoselective metabolism. Studies with (-)-, (+)-, and (+/-)-cisapride were undertaken in human liver microsomes (HLMs) and recombinant cytochrome P450s (P450s) to determine the stereoselective metabolism and enantiomer-enantiomer interaction. Each enantiomer and racemic cisapride were N-dealkylated to norcisapride (NORCIS) and hydroxylated to 3-fluoro-4-hydroxycisapride (3-F-4-OHCIS) and 4-fluoro-2-hydroxycisapride (4-F-2-OHCIS). The kinetics for the formation of NORCIS from (-)-cisapride (Km = 11.9 +/- 4.8 microM; Vmax = 203 +/- 167 pmol/min/mg of protein) or (+)-cisapride (Km = 18.5 +/- 4.7 microM; Vmax = 364 +/- 284 pmol/min/mg of protein) in HLMs exhibited simple Michaelis-Menten kinetics, while a sigmoidal model characterized those of 3-F-4-OHCIS and 4-F-2-OHCIS. In vitro, NORCIS appears to be the major metabolite of both enantiomers. NORCIS and 3-F-4-OHCIS were preferentially formed from (+)-cisapride rather than (-)-cisapride, but that of 4-F-2-OHCIS was the reverse, suggesting regio- and stereoselective metabolism. The formation rate of each metabolite from each enantiomer (20 microM) in 18 HLMs was highly variable (e.g., NORCIS, >35-fold) and correlated with the activity of CYP3A (r = 0.6-0.85; p < 0.05). Coincubation of troleandomycin (50 microM) with cisapride enantiomers (15 microM) in HLMs resulted in potent inhibition of NORCIS formation (by 75-80%), while other inhibitors showed negligible effect. Of 10 recombinant human P450s tested, CYP3A4 catalyzed the formation of NORCIS, 3-F-4-OHCIS, and 4-F-2-OHCIS from each enantiomer and racemic cisapride (15 microM) with the highest specific activity (Km values close to those in HLMs). We noted that the rate of racemic cisapride metabolism by HLMs and recombinant human CYP3A4 is slower compared with equimolar concentrations of each enantiomer. When incubated simultaneously in HLMs, the enantiomers inhibit each other's metabolism. In conclusion, our data demonstrate for the first time the stereoselective metabolism and enantiomer-enantiomer interaction of cisapride. Provided that the potency or the response of the enantiomers differ, understanding the factors that control their disposition as opposed to that of racemic cisapride may better predict adverse drug interactions and the resulting prokinetic efficacy and cardiac safety of cisapride.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enantiomeric metabolic interactions and stereoselective human methadone metabolism.

Methadone is administered as a racemate, although opioid activity resides in the R-enantiomer. Methadone disposition is stereoselective, with considerable unexplained variability in clearance and plasma R/S ratios. N-Demethylation of methadone in vitro is predominantly mediated by cytochrome P450 CYP3A4 and CYP2B6 and somewhat by CYP2C19. This investigation evaluated stereoselectivity, models, ...

متن کامل

Metabolism of phenylahistin enantiomers by cytochromes P450: a possible explanation for their different cytotoxicity.

Phenylahistin is a fungal diketopiperazine derived from isoprenylated (Phe-DeltaHis) cyclodipeptide. The (-)-enantiomer is a cell cycle inhibitor, which can be potentially used as an antitumor agent. By contrast, the (+)-enantiomer exhibits no antimicrotubule activity. To better understand the differences that could arise from a difference of bioavailability, we investigated the interaction and...

متن کامل

Stereoselective metabolism of cibenzoline, an antiarrhythmic drug, by human and rat liver microsomes: possible involvement of CYP2D and CYP3A.

Stereoselective metabolism of cibenzoline succinate, an oral antiarrhythmic drug, was investigated on hepatic microsomes from humans and rats and microsomes from cells expressing human cytochrome P450s (CYPs). Four main metabolites, M1 (p-hydroxycibenzoline), M2 (4,5-dehydrocibenzoline), and unknown metabolites M3 and M4, were formed by human and rat liver microsomes. The intrinsic clearance (C...

متن کامل

Enantiomer/enantiomer interactions between the S- and R- isomers of omeprazole in human cytochrome P450 enzymes: major role of CYP2C19 and CYP3A4.

We investigated the enzyme kinetic basis for the stereoselective disposition of R- and S-omeprazole (OME) and racemic OME in human liver microsomes. OME is primarily metabolized by the hepatic cytochrome P450 enzyme system (CYP2C19 and 3A4). The metabolism of each enantiomer and pseudoracemic OME was studied using unlabeled and (13)C(7)-labeled enantiomers. The enantiomers inhibited each other'...

متن کامل

Stereoselective metabolism of lansoprazole by human liver cytochrome P450 enzymes.

The stereoselective metabolism of lansoprazole enantiomers was evaluated by incubation of human liver microsomes and cDNA-expressed cytochrome p450 (p450) enzymes to understand and predict their stereoselective disposition in humans in vivo. The intrinsic clearances (Clint) of the formation of both hydroxy and sulfone metabolites from S-lansoprazole were 4.9- and 2.4-fold higher than those from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 298 2  شماره 

صفحات  -

تاریخ انتشار 2001